The Knave's Cosmological Theorem

Who? Tamsyn Morrill Joint work with Mansur Boase
From?
Trine University
When? Oregon State University Number Theory Seminar
Slides available on tsmorrill.github.io.

Agenda

The Classical Problem

A Variation
The Knave Map
Dynamics
Cosmology

Look and Say Sequence

The Look and Say Sequence is a recursive sequence of integers interpreted as decimal words. Forget base-10 representation. Look at
1.

What do you see?

I see one numeral, which is 1 . Which is to say, I see one 1 . Record 11 .

Look and Say Sequence

Now look at
11.

What do you see?

I see two numerals, which are both 1 . Which is to say, I see two 1 s. Record 21

Look and Say Sequence

One more example to drive it home. Look at
21.

What do you see?

Look and Say Sequence

The Look and Say Sequence begins

$$
1,11,21,1211,111221,312211, \ldots
$$

We can imagine that this sequence is the forward orbit of a map

$$
\varphi: \mathbb{W} \rightarrow \mathbb{W}
$$

where \mathbb{W} is the set of finite words in the alphabet

$$
\Sigma=\{0,1,2,3,4,5,6,7,8,9\}
$$

Dynamics

In this context, φ has some interesting properties as a dynamical system. We already have a clue that φ has a fixed point,

$$
\varphi(22)=22 .
$$

What other properties does this map have?

Dynamics

Theorem (Conway, 1986)

There is a real number α such that

$$
\lim _{n \rightarrow \infty} \frac{\left|\varphi^{n+1}(1)\right|}{\left|\varphi^{n}(1)\right|}=L
$$

Further, L is an algebraic integer of degree 71.

Cosmology

How do we know that L is algebraic?

This theorem is proved by performing eigenvalue analysis on a matrix which represents the action of φ on \mathbb{W}. However, \mathbb{W} is not a vector space, and φ is not 'linear' under concatenation.
(Notice how $\varphi(11) \neq \varphi(1) \varphi(1)$.)

Instead, Conway lifted φ to a better-behaved set of words \mathbb{W}^{*}.

Cosmology

Theorem (Conway, 1986)

There is an explicit, finite 'periodic table of elements' for the Look and Say Sequence, i.e., a set of symbols Σ^{*} and an explicit map $\varphi^{*}: \mathbb{W}^{*} \rightarrow \mathbb{W}^{*}$ such that:
1 Each element $\alpha \in \Sigma^{*}$ represents a word $f(\alpha) \in \mathbb{W}$.
2 For all $\omega^{*} \in \mathbb{W}$, we have $f\left(\varphi^{*}\left(\omega^{*}\right)\right)=\varphi\left(f\left(\omega^{*}\right)\right)$.
3 We know exactly when $\varphi^{*}\left(\omega_{0} \omega_{1}\right)=\varphi^{*}\left(\omega_{0}\right) \varphi^{*}\left(\omega_{1}\right)$.

The Cosmological Theorem gets its name from the fact that all orbits of φ eventually 'decay' into the more stable 'base elements' of the periodic table.

Cosmology

This enables us to map \mathbb{W} to a free module over $\mathbb{R}($ really $\mathbb{Z})$, whose basis is Σ^{*}. (Just count how many times each symbol appears.)

We then construct a matrix representation of φ^{*} relative to Σ^{*}. In the limiting processes, L tends towards the eigenvalue of A with the largest magnitude.

The Knave Map

The Knave Map k acts upon a set of words \mathbb{W} written in the binary alphabet $\Sigma=\{0,1\}$. Because base- 2 variations of the Look and Say map have already been studied, we introduce some variation using the Knave character from Smullyan's Knights and Knaves puzzles.

To calculate $k(\omega)$, we first lie by applying the involution $0 \leftrightarrow 1$ to each bit. We next describe the resulting word as in the Look and Say map. Finally, we record the counts in their base-2 representation (without applying involution).

We begin with

Now look, knave!

The Knave Map

When we show the knave 1 , they see
0,
which is one 0 . Record 10.
When we show the knave 10 , they see
01,
which is one 0 one 1. Record 1011
When we show 1011, they see

$$
0100,
$$

which is recorded 1011100.

Dynamics

We have some elementary results.
Notice that k has no fixed points in \mathbb{W}. This is because $k(\omega)$ ends in the bit opposite to ω 's ending bit. Could k^{2} have fixed points? Yes, but they are not finite.

Theorem (M -, When extended to the space of infinite binary words, the map k^{2} has 2020) exactly four fixed points. Considered under a metric, two of these points are repelling ($11 \ldots$ and $00 \ldots$) and two are attracting:

$$
\begin{aligned}
& 1011110 \ldots \\
& 1011100 \ldots
\end{aligned}
$$

Each of the attracting points is a description of what the other is not.

Cosmology

We take advantage two observations in the development of our new alphabet \sum^{*} :
$1 \quad k(\omega)$ always starts with a 1.
$2 k(\ldots 01 \ldots)=k(\ldots 0) k(1 \ldots)$.

Thinking ahead, we want our alphabet to contain all words which begin with a run of consecutive ones, followed by a run of consecutive zeroes, each of which must be bounded in length.

We then attempt to calculate k^{*} on all two-letter words in Σ^{*}, adding additional letters to Σ^{*} if k^{*} is not yet well-defined.

Cosmology

Our current choice of Σ^{*} consists of the following:

1 For technical purposes, we have a boundary symbol '|'. This corresponds to the empty binary word.
2 We have "letters" a-n representing binary words $10,110,1110$,
3 For words that end in a 1, we also have "punctuation marks". For example, '.' represents ' 1 ', then '?' represents '11', and '!' represents ' 111 '. There are five punctuation marks in total.

Cosmology

When iterating k, the bits tend to bleed together. However, when working with k^{*} instead, we can restrict this behavior to the interaction of two adjacent symbols.

If $\omega \in \mathbb{W}^{*}$ has the form $\left|\alpha_{0}, \alpha_{1}, \ldots \alpha_{n}\right|$, where α_{i} is a letter for $i=0, \ldots n-1$ and α_{n} is either a letter or a punctuation mark, then
$1 \quad k^{*}(\omega)$ has the same form, and
$2 k^{*}(\omega)=\hat{k}\left(\mid, \alpha_{0}\right) \hat{k}\left(\alpha_{0}, \alpha_{1}\right) \ldots \hat{k}\left(\alpha_{n-1}, \alpha_{n}\right) \hat{k}\left(\alpha_{n}, \mid\right)$, where $\hat{k}:\left(\Sigma^{*}\right)^{2} \rightarrow \mathbb{W}^{*}$.

Further Work

Next, we will continue to refine the alphabet Σ^{*} to facilitate eigenvalue analysis. From there, all we need to do is calculate a matrix for k^{*} (really a matrix for \hat{k}) and calculate its eigenvalues.

We suspect that further study of this type of problem may be related to data compression algorithms, in particular to run-length encoding schemes.

\square
 \square
$+$

$+$ \square

-1
$\stackrel{-1}{\hat{N}}$
$\frac{1}{\lambda}$
\vdots
\vdots

（

震

－1
N
$\frac{\sim}{\lambda}$
\vdots
\vdots
\vdots

0

？
$\frac{\square}{2}$
$\frac{\square}{2}$

－

？ －

\square

－

\qquad
\qquad

Con
两

再

